Katrina Sahawneh wrote this post as a final project for Stacy Krueger-Hadfield’s Science Communication course at the University of Alabama at Birmingham. Katrina is working on her MS in Biology and her MA in Education. She currently is studying ER stress and pathogen immunity in Arabidopsis thaliana in Dr. Karolina Mukhtar’s lab. In her spare time, she enjoys drawing and painting.
Have you ever been in the middle of two people giving you the opposite advice on what to do?
Well, it turns out, plants have this problem, too.
Robin Waples receives the prize plate from prior Molecular Ecology Prize winner Fred Allendorf (photo credit: Diane Haddon)
Robin Waples, the 2018 winner of the Molecular Ecology Prize, received a plate commemorating the award in a ceremony Sunday at the Conservation Genetics 2018 conference. The prize recognized Waples’s extensive contributions in the use of molecular genetic data to estimate effective population size, gene flow, and population subdivision in natural populations and complex life-history scenarios.
Elise Keister wrote this post as a final project for Stacy Krueger-Hadfield’s Science Communication course at the University of Alabama at Birmingham. Elise studies the impact of climate change on coral as a PhD student in Dr. Dustin Kemp’s lab. Elise completed a B.S. in Biology and Marine Science at the University of Miami’s Rosenstiel School of Marine and Atmospheric Science (RSMAS) and then was involved in a myriad of research projects ranging from damage assessment for the Deepwater Horizon Oil Spill to the impact of thermal stress on Floridian coral species. Elise is passionate about working with these susceptible invertebrates that play such a foundational role in coral reef ecosystems. She hopes to determine some mechanisms coral utilize to promote resiliency to high temperatures, as this will only become more common in the decades to come. Elise tweets at @elise_keister.
Looking around for a topic to write about, I found a recent paper in Nature that struck me for four reasons. The first is how it ties into my previous post about repeated patterns in evolution of sticklebacks in higher latitudes. This new paper uncovers a surprising pattern in marine fish biodiversity – the fastest rates of speciation occur in polar regions of the globe – not tropical waters. These results are paradoxical because polar regions also have the lowest species richness of fishes. The prevailing dogma is that lower latitudes harbor higher levels of biodiversity on land and in the sea and higher rates of marine species formation in the tropics have been inferred in fossil molluscs, plankton, and coral. However, the authors found the fastest overall rate of speciation occurs in the south polar seas within icefishes and their relatives. The mean speciation rate is over two times greater in the Southern Ocean around Antarctica than in the Coral Triangle in the Indo-Pacific, the marine region exhibiting the highest species richness. Though there is little overlap in species that occur in the southern and northern polar regions, the northern seas exhibit high speciation rates as well. Moreover, there is a high correlation between endemism and speciation rate. A notable exception is the Mediterranean Sea, which shows high endemism, but a low speciation rate. Clearly, there’s something about the high latitudes that’s conducive to high rates of evolution in marine fishes. How can it be that the tropical latitudes harbor the most number of species if the rate of species generation is so much higher in the polar regions? One obvious hypothesis is that the extinction rate is much higher at the poles as well. The authors were unable to examine extinction rates in this study, but mention elsewhere that their current work is exploring this avenue.
Finding new and engaging ways to communicate science is of paramount importance. But, how many opportunities are there to practice the art of communication?
That’s how I began the lead-in piece for a series of student posts over a year ago (see piece here and the student posts can be found here).
Giving students the opportunity to hone their communication skills is a must. They need to be adept at engaging with all sorts of people who will cross their paths … from policy makers to scientists in the same field to an interested person when you’re in the field.
Clichés are normally clichés for a reason …. practice makes perfect (or at least a lot better).
I’ve been lucky enough to expand my Science Communication course at the University of Alabama at Birmingham since I last taught it two years ago this fall (time does fly … more about that in a future post on the meetings I was supposed to cover <<insert chagrin here>>).
Students in the first round were able to write a blog post about a topic of their choice. Each student that submitted the blog post to Jeremy and myself got them published. Not only did they learn how to distill the primary literature, but they each got another line on their CV.
Over the last academic year, I have taught an Evolution course and the revamped Sci Comm, in which grad students in both courses had the opportunity to write a blog post again. I was impressed with the quality and excitement in the first round. I also wanted to try to provide other opportunities for students. As regular readers will know, I have found my time at TME to be incrediblyrewarding.
Starting next Tuesday, each week a new blog post written by a student from my graduate Sci Comm course or from the graduate section of my Evolution course will go live.
There’ll be another series of student-written posts in the new year from my new Conservation Genetics course. I’m hoping this can be a series that will continue each time I teach a course with grad students at UAB.
The more I think about science communication … the more I wonder.
Is science communication a bit redundant? Should we not simply communicate? It’s probably a philosophical argument best saved for another day when a two-year review, a late piece for a society newsletter, and several manuscripts aren’t looming.
I hope you enjoy reading the posts over the next few weeks as much as I did working with the students to turn these into publishable pieces of science communication.
Do American scientists know that doing research in America is a necessary step for many scientists from other parts of the world in order to get a permanent job in academia in their home country?
Once in the US, these researchers face many challenges outside of academia that can significantly affect their survival and well-being, and ultimately, their scientific output. These challenges include health care, visa issues, housing, taxes, the school system, and child care. In America, people can easily fall through the cracks. Many other countries have a safety net that protects you while working at an academic institution. In the US however, offices will not coordinate and fix problems without the affected individuals being involved.
Pssst! The following text is only for postdocs. (I also mean grad students and visiting scholars).
The Evolution conference in Montpellier is over, and as the sun, wine and great science become a memory, here is my recap of some conference highlights following on from a great first day:
A sea of scientists waiting for a plenary lecture. Photo: Alex Twyford.
Sharon Strauss (University of California Davis) gave the ASN Presidential Address entitled “Diversity and coexistence in close relatives, and reflections on 150 years of the ASN”. In her talk, she discussed the coexistence of closely related plant species, and whether phylogenetic similarity predicts ecological similarity. Her work centres on herbaceous plant communities at the UC Bodega Marine Reserve in California and combines reciprocal transplant experiments with phylogenetic analysis. One of her main results was a curvilinear relationship in species performance and genetic divergence, i.e. that species perform best in sites of conspecific taxa that share similar ecological preferences, and in sites of distant relatives where there is less competition. She also showed rare species advantage, reproductive character displacement, and fine-scale exclusion within the plant community. The second part of her talk discussed the history of the American Society of Naturalists, a topic covered by the Molecular Ecologist earlier this year.
The conference kicks off with the ESEB Presidents’ Award delivered by Loeske Kruuk (Australian National University), with a talk entitled ‘Evolutionary dynamics and fitness in wild populations’. Studying quantitative genetics in the wild is challenging because many classical theoretical predictions don’t apply, and because robust inferences require long-term studies that genotype complete populations. Loeske discusses how her work generating a completely pedigree, along with large-scale phenotypic data, for the superb fairy-wren (Malurus cyaneus), has given insights into quantitative genetics in the wild. Interestingly she shows temporal covariance between body size and fitness, but this is because body size is related to other traits, and therefore there is no expectation of body size showing an evolutionary response. She also shows date of moult is heritable, and suggests this means that ‘the early bird gets the girl’. She finishes up by saying that there are less than 10 estimates of fitness for wild populations, and that there are some consistent effects between species (like cohort effects) but lots of variation. I’m really looking forward to seeing the paper where these comparisons of fitness are presented.
This is a guest post by Taylor Wilcox and Katherine Zarn, whose article “Capture enrichment of aquatic environmental DNA: A first proof of concept” is online ahead of publication at Molecular Ecology Resources. Wilcox and Zarn wanted to elaborate on the usefulness of capture enrichment as an alternative to metabarcoding beyond what they could cover in that paper’s discussion, and this post is the result. — JBY
Environmental DNA sampling for multi-taxa species detection (i.e., the inference of species presence from genetic material in the environment) has been a hot topic lately. Some of the most exciting recent work has used high-throughput sequence (HTS) to simultaneously screen for the presence of large suites of taxa (Valentini et al. 2016), estimate relative species abundances (Ushio et al. 2018), and even make inferences about population structure (Sigsgaard et al. 2016). Most of these studies have relied on metabarcoding, which despite its obvious utility, has some real limitations. One fundamental limitation emerges from a reliance on shared primers for bulk amplification of mixed templates. This tends to generate skewed relative sequence abundances after enrichment and potential loss of species detection (Deiner et al. 2018, Piñol et al. 2018).