The Earth BioGenome Project aims to sequence all currently described ~1.5 million eukaryotic species on earth (Lewin et al., 2018; Figure 1). The scale and scope are enormous, and it is hard to imagine a more ambitious but exciting goal.
Last month, I attended the launch of the Earth BioGenome Project, held at the Wellcome Trust in London. From the first session you could sense the buzz and anticipation. Harris Lewin opened the meeting with his vision for the project. He sees Earth BioGenome as biology’s ‘moonshot’, as transformative for science as placing a man on the moon. The projected cost of $4.7bn is similar to the Human Genome Project ($2.7bn, equivalent to $5bn today), and is somewhat comparative in the need for collaborative effort from different research groups. The need for global collaboration is clear: to sequence earth’s diversity we need to use samples held in museum, zoo and botanic garden collections from across the globe; we need extensive new field collections (particularly in biodiversity hotspots); we need to develop new sequencing infrastructure and bioinformatic pipelines; and we need scientists to use these data for research, biodiversity monitoring and conservation. Lewin reminded us that not all the uses of the human genome were clear when the project was launched, and the same applies to Earth BioGenome data. But obvious uses are for benefitting human welfare (e.g. drug discovery and crop improvement), protecting biodiversity, and understanding ecosystems.
